Download Einführung in die Röntgenfeinstrukturanalyse: Lehrbuch für by Harald Krischner PDF

By Harald Krischner

1. Entstehung und Eigenschaften von Röntgenstrahlen.- 1.1. Definition.- 1.2. Das kontinuierliche Röntgenspektrum.- 1.3. Das charakteristische Röntgenspektrum.- 1.4. Erzeugung von Röntgenstrahlen.- 1.5. Strahlenschutz.- 1.6. Nachweis von Röntgenstrahlen.- 1.6.1. Röntgenfilme.- 1.6.2. Zählrohre.- 1.6.3. Festkörperdetektoren.- 1.7. Absorption von Röntgenstrahlen.- 1.7.1. Absorptionskoeffizient.- 1.7.1.1. Berechnung des Massenschwächungskoeffizienten für Ba(N3)2 für verschiedene Röntgenwellenlängen.- 1.7.1.2. Berechnung der Eindringtiefe von Röntgenstrahlen.- 1.7.2. Absorptionskanten.- 1.7.3. Absorptionsanalyse.- 1.8. Anregung der Eigenstrahlung.- 1.8.1. Elektronenstrahl-Mikrosonde.- 1.8.2. Anregung der Eigenstrahlung von Elementen durch Röntgenstrahlen, Emissionsanalyse (Röntgenfluoreszenzanalyse, RFA)..- 1.9. Brechung von Röntgenstrahlen.- 1.10. Streuung von Röntgenstrahlen.- 1.11. Beugung von Röntgenstrahlen.- 1.11.1. Die Lauegleichungen.- 1.11.2. Die Braggsche Reflexionsbedingung.- 1.11.3. Durchführung von Beugungsuntersuchungen.- 2. Pulveraufnahmeverfahren.- 2.1. Debye-Scherrer-Verfahren.- 2.1.1. Präparation.- 2.1.1.1. Stäbchenförmige Präparate.- 2.1.1.2. Einfüllen in Kapillaren.- 2.1.1.3. Präparation an Glasfäden.- 2.1.2. Kamera und Blendensystem.- 2.1.3. Vorbereitung und Einlegen des Filmes.- 2.1.4. Anbringen der Kamera an der Röntgenröhre und Wahl der geeigneten Röntgenstrahlen.- 2.1.5. Monochromatisierung der Röntgenstrahlung.- 2.1.6. Anfertigung einer Debye-Scherrer-Aufnahme des Cu-Drahtes...- 2.2. Aufnahmeverfahren nach Straumanis.- 2.2.1. Anfertigen einer Pulveraufnahme nach Straumanis.- 2.3. Ausmessen von Debye-Scherrer-Filmen und Straumanisfilmen und Berechnung der Netzebenenabstände.- 2.4. Seemann-Bohlin-Verfahren.- 2.5. Planfilm- und Kegelverfahren.- 2.6. Guinierverfahren.- 2.7. Zählrohrdiffraktometerverfahren.- 2.7.1. Präparation.- 2.7.2. Durchführung von Diffraktometeraufnahmen.- 2.7.3. Pulverdiffraktometer mit Monochromator und automatischem Divergenzspalt.- 2.7.4. Mikroprozessorgesteuerte Pulverdiffraktionsanlagen.- 2.7.5. Transmissionsdiffraktometer.- 2.7.6. Transmissionsdiffraktometer mit ortsempfindlichem Zähler.- 2.8. Pulveraufnahmen bei hoher und tiefer Temperatur.- three. Auswertung von Pulveraufnahmen (Geometrie der Beugung).- 3.1. Identifizierung unbekannter Substanzen mit Hilfe des PDF.- 3.1.1. Index to the powder diffraction dossier, Hanawalt-Index.- 3.1.2. Fink-Index.- 3.1.3. KWIC-Index (Key note in Context).- 3.1.4. Computermethoden.- 3.1.5. Identifizierung von Pulvergemischen.- 3.2. Kristallographische Datenbanken.- 3.3. Indizierung von Pulveraufnahmen.- 3.3.1. Achsensysteme und Bravaisgitter.- 3.3.2. Punktkoordinaten, Richtungsindizes und Flächenindizes.- 3.3.3. Netzebenenabstand dhkl.- 3.3.4. Indizierung kubischer Kristalle.- 3.3.4.1. Indizierung bei bekannter Gitterkonstante.- 3.3.4.2. Indizierung bei unbekannter Gitterkonstante.- 3.3.5. Graphische Indizierung kubischer und tetragonaler Kristalle.- 3.3.5.1. Graphische Indizierung von Rutil.- 3.3.5.2. Rechnerische Indizierung tetragonaler Kristalle.- 3.3.6. Graphische Indizierung hexagonaler Kristalle.- 3.3.6.1. Transformation einer hexagonalen Elementarzelle in eine orthohexagonale.- 3.3.6.2. Transformation einer hexagonalen Elementarzelle in eine rhomboedrische.- 3.3.7. Indizierungsverfahren mit Hilfe des reziproken Gitters.- 3.3.7.1. Das reziproke Gitter (RG).- 3.3.7.2. Graphische Konstruktion des RG.- 3.3.7.3. Vektordiskussion des RG.- 3.3.7.4. Indizierung von Röntgenpulveraufnahmen unter Zuhilfenahme des RG (Methode nach Ito).- 3.3.7.5. Indizierung von Bariumazid nach der Ito-Methode.- 3.3.8. Computermethoden zur Indizierung von Röntgenpulver-aufnahmen.- 3.3.9. Reduzierte Zelle.- 3.4. Präzisionsbestimmung von Gitterkonstanten.- 3.5. Quantitative Mengenanalyse.- 3.5.1. Quantitative Bestimmung von ZnO in ?-Al2O3.- 3.6. Teilchengrößenbestimmung.- 3.6.1. Röntgenkleinwinkelstreuung.- four. Die Intensität gebeugter Röntgenstrahlen.- 4.1. Der atomare Streufaktor (Atomformfaktor).- 4.2. Temperaturfaktor.- 4.3. Strukturamplitude und Strukturfaktor.- 4.4. Flächenhäufigkeitsfaktor.- 4.5. Polarisationsfaktor.- 4.6. Lorentzfaktor und kombinierter LP-Faktor.- 4.7. Absorptionsfaktor.- 4.8. Extinktion.- 4.9. Ausdrücke für die relativen Intensitäten.- five. Einkristallverfahren.- 5.1. Lauemethode.- 5.2. Drehkristallverfahren.- 5.3. Die Ewaldsche Konstruktion.- 5.4. Gitterkonstantenbestimmung aus Drehkristallaufnahmen.- 5.5. Aufnahmeverfahren mit bewegtem Film.- 5.5.1. Weissenbergverfahren.- 5.5.2. Weitere Einkristallkameras.- 5.5.3. Einkristalldiffraktometer.- 5.5.3.1. Auswahl der Kristalle.- 5.5.3.2. Orientierungsmatrix und Gitterkonstanten.- 5.5.3.3. Messen der Intensitäten.- 6. Kristallstrukturanalyse.- 6.1. Anzahl der Formeleinheiten in der Elementarzelle.- 6.1.1. Berechnung der Anzahl der Formeleinheiten in Ba(N3)2.- 6.2. Punktgruppen und Raumgruppen.- 6.3. Raumgruppenbestimmung.- 6.4. Das Phasenproblem.- 6.5. Iterative Methoden der Kristallstrukturanalyse.- 6.5.1. Kristallstrukturanalyse von NaCl.- 6.6. Bestimmung der Elektronendichteverteilung mittels Fourierreihen.- 6.7. Pattersonsynthese.- 6.8. Direkte Methoden der Phasenbestimmung.- 6.8.1. Normalisierte Strukturfaktoren EH.- 6.8.2. Die Verteilung der EH-Werte.- 6.8.3. Strukturinvariante.- 6.8.4. Strukturseminvariante.- 6.8.5. Das Nachbarschaftsprinzip.- 6.8.6. Identitäten.- 6.8.7. Repräsentationen.- 6.8.8. Wahl des Koordinatenursprungs und Phasenbestimmung mittels der Sayre-Gleichung.- 6.8.9. Symbolische Addition.- 6.8.10. MultiSolution, Permutationsmethode.- 6.8.11. Durchführung Direkter Methoden.- 6.9. Isomorpher Ersatz.- 6.10. Anormale Dispersion.- 6.11. Strukturverfeinerung.- 6.11.1. Die Methode der kleinsten Fehlerquadrate (Least Squares).- 6.11.2. Differenzfouriersynthesen.- 6.11.3. Der Übereinstimmungsfaktor R.- 6.12. Interatomare Abstände und Winkel.- 6.13. Grenzen der Methode und Möglichkeiten.- 6.14. Kristallographische Programmsysteme.- 7. Anwendungsbeispiele für Röntgenuntersuchungen in der Chemie.- 7.1. Bestimmung kinetischer Daten.- 7.1.1. Die kinetische Verfolgung des Silberoxidzerfalles.- 7.2. Aufstellen eines Zustandsdiagramms.- 7.3. Aufstellen des Zustandsdiagramms für ein approach Salz-Wasser.- 7.4. Festlegen optimaler Bildungsbedingungen.- eight. Anhang.- 8.1. Vektorrechnung.- 8.2. Tabellen und Tafeln.- 8.2.1. Die quadratische shape für kubische, tetragonale und hexagonale Systeme.- 8.2.2. Die Funktion % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaWcaaWdaeaapeGaaGymaiabgUcaRiGacogacaGGVbGaai4Ca8aa % daahaaWcbeqaa8qacaaIYaaaaOGaaGOmaiabeg9akbWdaeaapeGaci % 4CaiaacMgacaGGUbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHrpGs % caGG3cGaci4yaiaac+gacaGGZbGaeqy0dOeaaaaa!4990!$$ frac{{1 + {{cos }^2}2vartheta }}{{{{sin }^2}vartheta cdotcos vartheta }}$$.- 8.2.3. Die Funktion % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe % aadaWcaaWdaeaapeGaaGymaiabgUcaRiGacogacaGGVbGaai4Ca8aa % daahaaWcbeqaa8qacaaIYaaaaOGaaGOmaiabeg9akbWdaeaapeGaci % 4CaiaacMgacaGGUbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHrpGs % aaaaaa!43DA!$$ frac{{1 + {{cos }^2}2vartheta }}{{{{sin }^2}vartheta }}$$.- 8.2.4. Die Funktion % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe % aadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaadaWadaWdaeaa % peWaaeWaa8aabaWdbmaalaaapaqaa8qaciGGJbGaai4Baiaacohapa % WaaWbaaSqabeaapeGaaGOmaaaakiabeg9akbWdaeaapeGaci4Caiaa % cMgacaGGUbGaeqy0dOeaaaGaayjkaiaawMcaaiabgUcaRmaabmaapa % qaa8qadaWcaaWdaeaapeGaci4yaiaac+gacaGGZbWdamaaCaaaleqa % baWdbiaaikdaaaGccqaHrpGsa8aabaWdbiabeg9akbaaaiaawIcaca % GLPaaaaiaawUfacaGLDbaaaaa!4FFA!$$ frac{1}{2}left[ {left( {frac{{{{cos }^2}vartheta }}{{sin vartheta }}}
ight) + left( {frac{{{{cos }^2}vartheta }}{vartheta }}
ight)}
ight]$$.- 8.2.5. Einheitskreis zur Berechnung von cos 2 ? rhx und sin 2 ? hx.- 8.2.6. Atom- und Ionenradien.- Literatur.- Sachwortverzeichnis.

Show description

Read Online or Download Einführung in die Röntgenfeinstrukturanalyse: Lehrbuch für Physiker, Chemiker, Physikochemiker, Metallurgen, Kristallographen und Mineralogen im 2. Studienabschnitt PDF

Best german_12 books

Ärztliche Maßnahmen aus psychologischer Sicht — Beiträge zur medizinischen Psychologie

Wenn ärztliche Maßnahmen aus psychologischer Sicht betrachtet werden, dann könnte der es sollten Verhaltensweisen einer Berufsgruppe mit dem Instrumen­ Verdacht aufkommen, tarium einer anderen Berufsgruppe gleichsam seziert und die Ergebnisse einer interessier­ ten Öffentlichkeit preisgegeben werden.

Der Heidelberger Karl-Theodor-Globus von 1751 bis 2000: Vergangenes mit gegenwärtigen Methoden für die Zukunft bewahren

Ein gelungenes Beispiel für eine lebendige Zusammenarbeit mit unterschiedlichen Disziplinen wird mit der Restauration dieses wichtigen Kulturguts veranschaulicht: Das Heidelberger Exemplar eines Vaugondy Globus von 1751 hat eine wechselvolle Geschichte und wurde in jüngster Zeit mit hochmodernen Methoden aufwendig restauriert.

Extra resources for Einführung in die Röntgenfeinstrukturanalyse: Lehrbuch für Physiker, Chemiker, Physikochemiker, Metallurgen, Kristallographen und Mineralogen im 2. Studienabschnitt

Sample text

2. Durchführung von Diffraktometeraufnahmen Das Diffraktometer muß, entsprechend den Anweisungen des Herstellers, genau justiert aufgestellt werden. Es ist zu beachten, daß das Zählrohr für die verwendete Strahlung geeignet ist und daß es mit der richtigen Hochspannung (vgl. 2) betrieben wird. Ferner müssen Verstärker, Zähler und Registriereinrichtungen richtig angeschlossen sein. B. ex-Quarz, Cu-Kexl = 36,55° und 42,45°). Diese Reflexe müssen bei Verwendung kleiner Blenden bei einer Goniometergeschwindigkeit von 1/4° min- I bei der richtigen WinkelsteIlung erscheinen und eine Aufspaltung des Kexl- und Kex2-Dupletts erkennen lassen.

Man kann aber auch aus Al-Blech Schablonen anfertigen und zum Stanzen ein Locheisen (9 mm C/J) verwenden. 4. Anbringen der Kamera an der Röntgenröhre und Wahl der geeigneten Röntgenstrahlung Die Kamera wird möglichst nahe am Punktfokus der Röntgenröhre montiert, wobei eine Neigung von 8° bis 10° gegen die Röhre die beste Ausnützung der Intensität ermöglicht. 5). 5 Zwischen Debye-Scherrer-Kamera und Röntgenröhre dürfen keine Röntgenstrahlen austreten (Strahlengefahr). Die Kamera wird etwa 8° gegen die Röhre geneigt angebracht.

Der Durchmesser der Kamera wird so gewählt, daß der Umfang des Zylinders entweder 180 mm oder 360 mm beträgt. Das ergibt für die kleine Kamera einen Durchmesser von 57,30 mm und für die große Kamera 114,59 mm. Dadurch ist eine direkte Umrechnung der auf dem Film in mm abgelesenen Abstände in Winkelgraden möglich. Die kleine Pulverkamera erfordert kurze Belichtungszeiten und wenig Filmmaterial. Sie eignet sich daher besonders für Routineuntersuchungen. Die große Kamera wird rur Präzisionsbestimmungen von Gitterkonstanten und für die Untersuchung sehr linienreicher Substanzen oder Substanzgemischen verwendet.

Download PDF sample

Rated 4.13 of 5 – based on 47 votes